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Electric Field Enhancement and Power
Absorption in Microwave TR-Switches

V. Semenov, M. Lisak, and D. Anderson

Abstract—An analytical and numerical investigation is made of
electric field enhancement due to scattering of an incident plane
wave by a biconical conductor. An application to microwave
transmit-receive switches (TR) shows that field enhancement
factors of the order of 20 to 40 are to be expected in the
region close to the keep-alive contacts. An analysis of the mi-
crowave absorption by a small plasma sphere located in the vertex
of the biconical conductor is also presented, showing that the
plasma sphere absorbs a significant fraction of the incident power
independently of the plasma size. This explains the observed
absorption properties during the turn-on phase of TR switches.

I. INTRODUCTION

N MANY applications, microwave breakdown in gases

plays a beneficial role as in, e.g., microwave transmit-
receive switches (TR), [1], [2]. The purpose of the switch
is to protect the system by working as a plasma limiter,
which allows undisturbed microwave transmission through
the TR unit for low powers but blocks out high powers
by reflecting against a rapidly self-generated and strongly
conducting plasma. In order to obtain short turn-on times of
the TR switch, an electron priming source is employed, either
in the form of a radio-active material and/or by a small keep
alive current through the switch, Furthermore, the priming
source is made in the form of sharp truncated cones, which
provides the additional advantage of a strong electric-field
enhancement (see Fig. 1). This further reduces the breakdown
level and contributes to rapid turn-on. The operation of a TR
switch involves many characteristic break-down phenomena:
the initial break-down of the gas by the ionizing action of
the incident wave together with the subsequent, inherently
nonlinear interaction between the break-down plasma and
microwave. A detailed experimental and theoretical investi-
gation of a number of physical phenomena occurring in TR
switches has been presented in [3], where a good agreement
between theoretical predictions and experimental results has
been found. In a separate investigation [4], the self-consistent
and nonlinear interaction between a high-power microwave
and a breakdown plasma in TR switches was studied with
special emphasis on the properties of power reflection and
absorption in a steady state.
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Fig. 1. Typical design of a TR switch.

Although a good agreement between theoretical and experi-
mental results has been obtained in the previous works, the
predicted breakdown level in the TR-switch was based on
a rough estimate of the average electric field enhancement
in the vicinity of the keep-alive contacts. A more detailed
knowledge about the field structure close to the contacts is not
only necessary for a consistent determination of the breakdown
plasma, but also allows the calculation of the power absorped
during the creation process of the breakdown plasma. An
analysis of these problems is the aim of the present work.

The study of the electric field distribution in a waveguide
distorted by the presence of keep alive contacts is a very
difficult task since the problem is inherently three-dimensional.
Thus, the solutions based upon analytical techniques cannot be
obtained in the form of closed expressions and computer-aided
numerical analysis becomes imperative. Even the strongly
simplified situation where the presence of the waveguide is
neglected and only scattering of a plane electromagnetic wave
on a perfectly conducting double cone (representing the keep
alive contacts) has not been investigated in the literature. The
existing investigations have only been concerned with the scat-
tering of a plane electromagnetic wave by a single, perfectly
conducting cone (semi-infinite or finite), [5]-[12]. It should be
mentioned also that biconical conducting structures have been
considered earlier in connection with electromagnetic radiation
from a symmetrical, broad band antenna (e.g. [13]-[15]).

Since the main purpose of this work is to determine the
electric field enhancement in the vicinity of the contacts, an
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Fig. 2. Idealized geometry of the keep-alive contacts in a TR switch.

analytical approach is applied in Section II to analyze the
field structure close to the vertex of the biconical conductor
without solving the general scattering problem. In Section
111, the electric field distribution and the local electric field
enhancement in a realistic TR-switch configuration are inves-
tigated numerically by means of the finite element method.
The results are in good agreement with those obtained in
Section II. In Section IV, the microwave absorption by a small
plasma sphere located in the vertex of the biconical conductor
is analyzed. It is shown that the plasma sphere absorbs a
significant fraction of the incident wave power independently
of the plasma size. Finally, Section V summarizes the results
and presents conclusions.

II. ELECTRIC FIELD ENHANCEMENT DUE TO SCATTERING
OF AN INCIDENT WAVE BY A BICONICAL CONDUCTOR

As our model problem for analytical investigation of the
electric field enhancement by the sharp conical keep alive
contacts in TR switches, we consider a situation where the
geometry of the keep alive contact has been idealized as a
double cone according to Fig. 2. A plane wave is incident on
the biconical perfect conductor extending from the origin to

infinity below and above the z-y plane. The incident wave
is polarized in the z-direction. The assumption of an infinite
double cone structure is motivated by our interest of the
electric field structure close to the vertex of the double cone
and it is valid for k,L > 1, where k, = 27/ is the free space
wave number and L is the distance between the cavity walls.

Clearly, if one is to attempt a rigorous solution as a boundary
value problem, it is appropriate to use spherical coordinates
r, 8, ¢ connected to the (Cartesian coordinates by the usual
relations = = rsinfcosy, y = r sinf siny and z = rcosd.
Since # = 0, and § = & — 0, define the surface of the perfect
biconical conductor, the boundary conditions for the total field
are

E.=E,=0 atf=0,and =7 — 4, D

and for very large values of r, the total field must approach
the incident plane wave

E® = E,(cosf7 — sin Oé)em"”ine"os*’ )

)elkor sin 6 cos ¢

3
where Z, = \/uo/e€, is the intrisic impedance of the free
space.

It is well-known (see [16]) that the components of a general
field can be expressed in terms of the scalar potentials U and
V., which satisfy the Helmholtz wave equation

(V2+E%) (U, V) =0 4)

T Eo . . N . A
H® = - 7 (sin 8 sin 7 +cos § sin ph+cos Y

Q

v2_1a 2 0 1 9 .68 1 0?
= *a‘( 5>+—rzsmm(3m 'a_e)+_""r25m29”aip_2
Looking for solutions to (4) of the form U = R(r)G(f)
cos(myp) and V = R(r)G(#) sin(my) it may be easily
verified that the function R(r) should satisfy the spherical
Bessel equation while the function G(#) is a solution of the
associated Legendre equation.

Because of the nonorthogonality of the spherical Bessel
functions on the conductor surface, the potentials U and V for
the total field have to be written as series of wave functions
with expansion coefficients to be determined. We then obtain
the following general solution of the wave equation (4):

U = AgRy(kr)Go o(6)

+ Z Z Ay, ymRy, Gy, m(cosf)cosme  (5)

s=0m=0

1 o= ,
V= ZZZBNSlmR“‘“mGUS‘m(COS d)sinme  (6)

s=0m=1

Since the spherical Neumann and Hankel functions are sin-
gular at the origin, only the spherical Bessel functions of the
first kind may be used, i.e.

Ru(kr) = ju(kor) = ‘/%Jw%(kor) %)
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where J,,1(k,r) is the cylindrical Bessel function. The
principal mode (n = 0, m = 0) has been added since the axis
(9 = 0,7) is not included in the field region. The Legendre
function G, ,(#) is given by

Gyolf) = 1n (agg) ®)

The boundary conditions (1) are fulfilled if the orders v, and
1s are chosen to satisfy

Gus,m(COS 6)|9:90’ﬂ._90 = 0 (9)

dG, m(cos )
‘T|9=60,w—90 =0

Equation (9) implies that the associated Legendre functions
should be of the form

10)

1
G, mp. (cost) = 5 [P

Vs lhs

(cos8) — P, (—cosf)] (11)

It is easy to show that the G, ., functions are orthogonal on
the interval (#,, 7 — 6,), and that the G,,, ,,, functions form
an orthogonal set over the same interval. Equations (9) and
(10) determine the eigenvalues v, and u,, so that for a given
value of m only discrete sequences of v and p are possible.
In particular, if m = 0,G,,, o(cosd) has only the first zero,
V,, below one and all the others exceeding one. If m > 1,
all values of v, and us exceed one. It can be shown that
for very small-cone angles, 6, the zeros corresponding to the
condition (9) are given by [17]:

T'(2m+s+1) 9, .
2m + 5) = 1+ prme ey tan™
- m=1,2,.-- (12)
)25 -1+

1.
=0 21In(2/6,)
where s has all positive integral vales including zero. Now
for r — 0, the spherical Bessel function j,, (k,r) varies as
7V>. Therefore, it follows from (5) and (6), that the electric
field varies as v~ ! as + — 0, ie., E — 0if v, > 1 and
E — oo if vy < 1. This means that the main contribution to
the field close to the vertex of the double cone corresponds to
v, < 1, which according to the previous discussion only takes
place for the m = 0 modes. Consequently, being interested in
electric field enhancement near the vertex we neglect the mode
with m > 1, and only retain two quasi-electrostatic modes:
1) the principal mode m = 0, v = 0 of the form

= _fa COSlher) 1
PR a3
F o oAy SID(ker) 1 7
H = =i == g
and 2) the mode m = 0, v = v, < 1 given by
i AV (Vo - X vy 8G"o,
{E = A, [T”#QJVOGUO,O + 9_%_) TO] )
- o . aa,
H = gDAUo.Obé_:]vo a00,0
However, the field strength of the mode m = 0,.vr =

v, decreases with increasing r and in accordance with the
symmetry of the incident field this mode is not excited. In order
to determine the excitation of the principal mode, we perform

the calculations at where the incident field is undisturbed. Of
importance here is the orthogonality relationship

71'—-90 d ,
/eo sin 8 CC;;’OdiZ’O:Oifv#v’

(15)

including v = 0. The matching condition for the #-components
of the incident and total electric fields at r — oo is

2n T—6, . dG
_ Eo/ d(P/ Sin2 Hezkror sin 6 cos ¢ 0,0
o) A,

do
2w w6
° dG
= FEysi 22 df
/O d(p/go psin 6§ 70

Since the product of any even mode with any odd mode, or
with any mode differing in index m, is obviously orthogonal,
we need to consider only such products that do not vanish
when integrated over ¢ from O to 2#x. Making also use of
(15), we obtain from (16) together with (8) and (13)

(16)

_ E, T
°" 2In(ctgl) cos (kor)

T—0,
/ df sin 6.1, (k,r sin6),
[
r—o0 (17)

Now applying the asymptotic form of the Bessel function

2
Jo(krsinf) ~ W/WCOS (kwsin@ - %), T — 00

(18)
the integral in (17) may be evaluated by the method of
stationary phase. The stationary point is § = /2, and the
result is

n*—0,
o 2 40 N
/ d0 sin 0.7, (kyr sin ) ~ C—ZSU r—oo (19)
6. o
which substituted into (17) gives
E,
(20)

Ag= —0
ko In(ctgls)

The electric field close to the vertex of the biconical conductor,
i.e., for kr <« 1, is therefore
-~ F, 1

Bo_
korsinf ln(ctg%’)

@D

In order to estimate the local field enhancement in presence
of a conical disturbance in the TR-switch, we take as an
example the parameters of the experiments presented in [3]
ie, f =9 and 11 GHz, 6, ~ 20°, § = 90°, r ~ 0.09 mm.
The local enhancement factors are then obtained from (21)
as |E/E,| ~ 27.5 and 22.5 for frequencies 9 and 11 GHz,
respectively. We note, however, that (21) has been derived on
the basis of an idealized model and a number of simplifying
assumptions. Then, from the point of view of the TR-switch
application, a natural question is how well does the above
result estimate the electric field enhancement in a realistic
TR-switch configuration. To answer this question, a numerical
solution of the problem by means of the finite element method
is presented in the next section.



SEMENOV et al.- ELECTRIC ENHANCEMENT AND POWER ABSORPTION IN MICROWAVE TR-SWITCHES 289

Y
} 1=30

iy

*D.Z
T ¥ (1

b
1

f [¥3

Fig. 3. The geometry of the waveguide with the keep alive contacts used in
the numerical calculations (longitudinal cross-section for x = 0 plane).

III. NUMERICAL CALCULATION OF THE ELECTRIC
FIELD ENHANCEMENT IN MICROWAVE TR-SWITCHES

The numerical analysis of the disturbed microwave electric
field in the presence of conical keep alive contacts located
in TR-switches is a difficult task since the problem in its
character is three dimensional and thus cannot be solved
without additional simplifying assumptions. Here, we apply
2 1/2-D analysis by means of the finite-element method. In
order to calculate the local electric field enhancement factor,
the local field magnitude will be normalized with respect to
the incident wave amplitude. This normalization seems to be
a justified one since it does not depend on the wave-guide
loading.

In the realistic TR-switch configuration considered in [3],
the waveguide (2x 1 cm) slightly differs from a typical X-band
guide, which has the interior dimensions 2.286x1.016 cm. The
cut-off frequency of the undisturbed, dominant TE;y mode of
the waveguide is f.10 = g = 7.5 GHz (b = 2 cm), while the
cut-off frequencies of the next higher-order modes become:
feo1 = feo2 = 15 GHz, f.11 = 16.77 GHz. It is evident that
frequencies in the X-band (8.2 to 12.4 GHz) can propagate
only in the dominant TE;y mode. Thus, we represent the
incident wave as the TE;q; mode of the form

E® =3B, Cos(ﬂ—;—)exp (iB2) (22)
where
B==VI-F2]F f.< . 23)

Note that, here, the mode is assumed to propagate along the
z-axis. The actual distribution of the electric field in the wave
guide without obstacles depends on the possible existence of
a reflected wave, which in turn depends on the waveguide
loading.

In order to determine the field distribution in the presence of
the sharp truncated cones, the finite element method has been
applied to a simplified model, since only a two-dimensional
analysis FEM program was available. The analysis has been
performed for the longitudinal cross-section shown in Fig. 3.

It is assumed that the field distribution along the z-axis is
the same as for the incident wave and the z-component of the
electric field intensity vector can be neglected. The latter is true
for the symmetry plane z = 0, but not for other longitudinal
cross-sections. The above assumption actually converts the
model of the waveguide with cones placed in it into a model in
which cones are replaced by wedges. It is evident that such a

model cannot be used for the analysis of electromagnetic field
transmission through the waveguide, because the reflection
from a wedge is much greater than the reflection from a cone.
However, the analysis of the local field restricted only to the
symmetry plane z = 0 should be sufficiently accurate.

In view of the above assumptions we introduce the magnetic
Hertz’s potential having only one z-component:

U=53.0 (24)
where the potential ¥ satisfies the wave equation
V2 + k2 =0 (25)
and the electric field vector can be evaluated from
~ o ov ov
E =iwopoV XV = iwpo| —§ — —2 (26)
Oz Jy
From the assumption that the potential varies with x as
V(z,y,z) = V(y,z)cos (E) 27N
b
the equation for V(y, z) is
o’V 0%V N
—_— + = V=0 28
o7 toa Tt 8 (28)

where 3% = k2 — (7 /b)2. The components of the electric field
vector are then determined by

E, = iwp, cos (%{) %‘zi
E, = —iwp, cos (%) %—y‘i (29)

The boundary conditions result from the condition that the
tantential component of the electric field vanishes at the walls
of the waveguide, at the surfaces of the cones and at the
symmetry plane 0 z z. These conditions have the form of
the homogneous Neumann boundary condition:

ov

on
To complete the formulation of the problem, boundary con-
ditions at the planes z = =1 should aiso be imposed. If
these planes are selected sufficiently far from the obstacles,
all evanescent modes can be neglected. Therefore, at the input
plane z = —1 the potential V(y, —1) corresponding to the
TE;¢ mode is constant as a function of y. Thus, the boundary
condition is a nonhomongeneous Dirichlet one:

V=1V

0 (30)

for z=-1 3D

At the output plane z = 1 the boundary condition has been
established under the assumption that only z-positive travelling
TE1p wave exists in the region 2 > 1. Hence

v

— =V for z=1 (32)
0z

Equation (28) with the boundary conditions (30), (31), and
(32) has been solved by means of the finite element method
(isoparametric second order elements have been used). The

software package SONMAP has been applied. As a result,
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Fig. 4. The electric field patterns for the frequencies. (a) 9 GHz. (b) 11 GHz.

the potential V' distribution has been obtained for several
frequencies. The equipotential lines have been plotted with
the help of the SONMAP graphical postprocessor, and the
magnitudes of the electric field density vector have been
calculated. The obtained field patterns are shown in Fig. 4(a)
and (b). Actually, the electric field lines for wt = #/2 and x =
0 have been plotted. It can be seen that the field line structure
close to the vertex of the double cone is similar to that of
the principal mode that has been considered in the analytical
model of the previous section. The local field enhancement
factor has been calculated as function of z for three values of
y. namely y = 0, 0.05; 0.09 mm, and for four frequencies as
before. The results are shown in Fig. 5(a) and (b).

It follows that at ¥y = 2 = 0.09 mm the enhancement
factors are 31 and 20.5 for frequencies 9 and 11 GHz, in
good agreement with the results of the analytical approach of
Section II.

IV. MICROWAVE ABSORPTION BY A SMALL PLASMA SPHERE
LOCATED IN THE VICINITY OF THE BICONICAL CONTACTS

The strong electric-field enhancement considered in the pre-
vious sections ensures a lowering of the effective breakdown
threshold of the switch. It is obvious that in the initial stage of
the breakdown process, the plasma will be created in the region
of the strong field, i.e., in the vicinity of the biconical contact.
The turn-on, or switching, time as well as the subsequent
nonlinear interaction between the plasma and the microwave,
depend on the absorption properties of the initial breakdown
plasma. According to the experimental observations of [3],
the power input into the TR switch at the switching time is
an order of magnitude above the peak leakage power. This
indicates that most of the incoming power is absorbed in the
initial breakdown plasma. It is our purpose here to show that
this indication is confirmed by an analytical estimate of the
power absorption.

Let us consider a plasma sphere with radius, a, such that
k.a <1, and with an arbitrary density distribution. The sphere
is located in the center of the perfectly conducting double cone
that has been considered in Section II.

The geometry of the wave field incident on the biconical
system is also the same as previously. Then, the most signifi-
cant effect of the interaction between the electromagnetic field
and the plasma is connected with the strongest field mode, i.e.
the principal mode.
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Fig. 5. The enhancement factors as functions of z for the frequencies (a) 9
GHz and (b) 11 GHz.

In order to determine the power absorbed by the plasma, let
us first demonstrate the analysis by considering the case of a
homogeneous plasma density. In the region outside the plasma
T > a, the electromagnetic field consists of a wave incident on
the plasma and a reflected wave (indicated by subscripts “I”
and *R”, respectively) which can be represented in the form:

N ~1 82(T'UI )
Er=6-
T (33)
PR o
LT97 a0 (34
with
_ 7] __Aoe—-zkor
L= 2ik0r1n (ctg§> X {Ceik”’ (35)
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where A, and C are constants. The field in the plasma region
T < ¢ (denoted by “P”) is given by

=~ 10%(rUy)
By =0 506 (36)
. ik U,
where
g\ sinkr
Up = Din (ctg§> . (38)
Here, D = const, k = kov/e,Z = Z,/+/¢, and € is he

dielectric constant of the plasma

w?

P
w(w + ) (39)

e=1-
where w, = (ne?/me,)/? is the electron plasma frequency,
n is the plasma density, w is the angular wave frequency, and
v is the effective collision frequency.
Matching the tangential components of the field outside and
inside the plasma at r = a, and using (33)-(38), we obtain

coska +ivesinka _o .
e
cos ka — i+/e sinka

(40)

e—zkoa

D=A,
coska — i/ sinka

(41)

Note that since k,a <1, the total field in the free space region
is only negligibly modified by the small plasma sphere where it
approaches the incident plane wave at r — co. Consequently,
(20) can be assumed to be valid even in the presence of the
plasma.

The total power absorption in the plasma, @, is given by
[18]:

g va -
—_°""p E 1243
Q 2(’U2 +w2)/Vpi p| T

42)

where d®r = 2rr?sinfdrdf. and V), is the plasma volume.

Using (20) and (41), we obtain from (42)

vw? |E,|? [ |cos kr|2dr
Q = 4ne, e
(V2 + w?) k2In(ctgl) [cos ka — iv/esin kal?

(43)

Having in mind the assumption k,a <1, we can argue that

the largest value of (7 is attained at a value of w;,, which does

not violate the condition

|ka| = koa| e < 1 (44)
In this limit (43) becomes
Q= 4re,vNa E, 45)

[(1+ 2Nk a)] F3in(cie3)

where N = w?/(w?® + v?). The maximum absorbed power,
Qmax, 18 obtained as

2 E?
Qmax = eV 131 (; ) (46)
<5+ 1+ 5) Sin(cty’s)
which occurs at
1
N =N. = “@n

Foa/ T ¥ (0]

It is easy to verify that |¢] < 1 at N = N*, which assures
that (44) is satisfied. Equation (47) shows that a small plasma
ball located in the center of the biconical perfect conductor
absorbs a finite value of the incident electromagnetic wave
power independently of the size of the ball.

Let us now generalize the above results for a plasma with an
arbitrary but symmetric density distribution inside the region
r < a, where k,a <1. Outside the plasma (r > a) and in the
vicinity of the vertex of the double cone, the field is mainly
given by (33)—(35). In the plasma region (r < a), we represent
the field vectors in the form

= 1 F(r)
Br=G 48)
= .1 G(r)
Hy = sinfd (49)

The functions F(r) and G(r) are determined by the Maxwell
equations

V x By, =ipwhH, (50)
V x H, = —iwe,eE, (51)
which yield
d—F = ipwG (52)
dr
e iwe e F (53)

Assuming now that kZa?|e|m.x <1, where |€9,.  is the
maximum value of ||, we find from (52) and (53) to the

first order in Ak2a2|e|max

F(r) ~ F(0), (54)
G(r) ~ iwsoF(O)/ edr (59
0
From the boundary conditions
F(r=a+0)=F(r=a—0)~ F(0),
Gir=a+0)=G(r=a-0)
N iwaoF(O)/ edr, (56)
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and from (33)—(35), (48) and (49), we obtain by matching the

tangential field components at 7 = ¢«

Lt+kofoedr oo
e 2iko

C= Ak, [Pedr) ’

(57)
eikoa
°1—k, [ledr
As follows from (48) together with (54), (58), and (20), the

electric field in the plasma is given by

R R E ezkoa 1
~ —f 2 - . 59
P ln(ctg%") (1 — ko [ edr) korsind (59

Substituting (59) into (42) and taking into account that

F(0) = A (58)

a 2
k242 / dry/1+ S N(r) < 1 (60)
o w
we obtain the total absorbed power as
4requNa E?
Q _ 0 o (61)

[+ ENko0) + (Nhoa)") EIn(ctes)

where Na = [’drw?/(w? + v?), which is exactly the ex-
pression (45) with N replaced by N. Correspondingly, the
maximum absorbed power occurs at

m— ==k 1
" koan/1+ (v/w)?

and Q.5 is given by (46).

In order to estimate what fraction of the input power is
being absorbed by the initial breakdown plasma we take the
averaged incoming power, P(’), as

bd

PO~ — p?
4z, °

where b and d are the transverse dimensions of the waveguide.
Then, we obtain

Qmax ~ 8w 1
PO bdk2In(ctgle) (1 + /1 + w2/v?)

(62)

(63)

(64)

Taking as an example f =10 GHz, 6, =20°, b =2 cm,
d =1 cm, and assuming v = w, we find from (64) that
Qax/P® 0.7, which shows that a large fraction of the
incoming microwave power can be absorbed in a small region
of the initial breakdown plasma. This is clearly in accordance
with the experimental observation of [3].

V. CONCLUSION

The present analysis has considered in detail the problem
of determining the averaged electric field enhancement in the
vicinity of the keep-alive contact in microwave TR switches.
The analytical results derived on the basis of an idealized
model of and a number of simplifying assumptions predict
field enhancement factors as 27.5 and 22.5 for frequencies

9 and 11 GHz, respectively, which are in good agreement
with the results of the numerical analysis. These predictions
provide a significant step towards a consistent determination
of the breakdown power level as well as the power absorbed
in the initial breakdown plasma in TR-switches. An analytical
estimate of the microwave power absorption by a small plasma
sphere located in the vertex of the biconical conductor shows
that the plasma sphere absorbs a large fraction of the incident
power, independently of the plasma size. This explains the
experimentally observed absorption properties of TR switches
during the turn-on phase.
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